sponsored by

THALES

HIGH-PERFORMANCE ACCELEROMETER APPLICATION

IN NAVIGATION, STABILIZATION, CONTROL AND SURVEYING

Wednesday, July 8, 2020

WELCOME TO

High-Performance Accelerometer Application in Navigation, Stabilization, Control and Surveying

Alan Cameron Editor in Chief Inside GNSS Inside Unmanned Systems

Vivien Lagorce MEMS Program Manager Thales

Dimitrios Damianos Technology & Market Analyst CEO and Managing Director **Yole Développement**

Edgar v. Hinüber **iMAR Navigation GmbH**

Pierre-Olivier Lefort MEMS Expert and Product Design Authority Thales

Co-Moderator: Lori Dearman, Executive Webinar Producer

Who's In the Audience?

A diverse audience of over 450 professionals registered from 53 countries, representing the following industries:

19% Military and defense

15% Research

11% University/Education

10% Automotive

6% Transportation, Logistics, Asset Tracking

6% Machine Control, Mining, Construction

3% Precision Agriculture

30% Other

Welcome from *Inside Unmanned Systems*

A word from the sponsor

Today's Moderator

QUICKPOLL

What is your status in selection of accelerometer and for which application do you plan to introduce it?

Poll Results (single answer required):

In early exploration without any specific application	36%
R&D - need accelerometer for civil or military airborne apps	23%
R&D - need accelerometer for land or naval apps	10%
R&D - need accelerometer for autonomous app (UAV/auto/train)	17%
Have accelerometer solution & do not plan to change solution	15%

Silicon Accelerometer MEMS

Vivien Lagorce MEMS Program Manager Thales

Thales recognized in high-grade inertial market since 1980

Embedded in major flagship civil and military programs for 40 years.

- High level of knowledge with more than 1,000 patents
- More than 10,000 navigation product/year and 300,000 MEMS sensors delivered in quartz and silicon technology
- More than 1,5 billions hour of using for MEMS sensors

New MEMS Silicon Accelerometer

The best of Thales's experience to propose a sensor alternative

- A large portfolio with the same sensor size
 - Up to 100g range and 70μg bias
- ➤ A very small size for the best performance levels
 - 6cm³
- Easy to integrate
 - Digital SPI interface
- ▶ 100% France design and manufacture

TopAxyz MEMS family	Ultimate input range	Extended input range			High input range				Standard input range		
ramily	4000 UR	3000 ExR	2000 ExR	1500 ExR	500 ExR	3000 HR	2000 HR	1500 HR	650 HR	2000 SR	1500 SR
Input range	<100g	70g			40g				15g		
Bias (in run)	<40 μg	<70 μg	<500 μg	<1000 μg	<4000 μg	<70 μg	<500 μg	<1000 μg	<2000 μg	<200 μg	<1000 μg

UR and ExR: under French exportation control HR: under European dual use exportation control

SR: free of exportation control

Thales design choices

- High-sensitivity vibrating beam principle, with differential design for 10³ common mode errors rejection
- Manufacturing with only highly stable silicon and silicon oxide materials (no metals), including THALES patent stress isolation features for die assembly
- Custom damping system to improve performance under vibration

Thales design choices

Designed to be simple to use

THALES Inside GNSS unmanned systems

Programmable sample rate up to 6400 Hz

Compensation parameters stored in memory for fast plug and play

Built-in test for safety critical system and maintainability

Analog and digital temperature information for compensation

- Calibrated digital speed increment output
- Sinusoidal analog output to be compatible with existing system

THALES www.thalesgroup.com

A robust French supply chain

- More than 10 years strong collaboration with Tronics Microsystems
- SiA integration, calibration and acceptance tests performed in Thales facilities
- Product availability and support is guaranteed throughout program lifetime, however long
- Production capacity higher than 30,000/year, with a smart logistic like Vendor Managed Inventory (VMI)
- A robust production line applying APQP international standard

www.thalesgroup.com

Our expertise in safety and critical applications for your system

- Applying DO254 DAL A aeronautics development methodology to prevent any potential failure
- Thales expertise to support customer during certification process with airworthiness authorities
- Safety and reliability justification to offer lifetime over 25 years and operational failure rate lower than 160.10-9/h(*)

(*) Under predefined life profile

Our support from your product development to serial production

Complete user guide to integrate SiA in your system

An enhance logicistic and a worldwide support

Integration
support to help
you in your
choices

EASA

A calibrated sensor associated to a Certificate of Conformity (CoC) for each sensor.

Engineering support and accessible DO254 data package for certification process

THALES

www.thalesgroup.com

MEMS History and Market

Dimitrios Damianos, PhD
Technology & Market Analyst
Yole Développement

HIGH PERFORMANCE INERTIAL SYSTEM APPLICATIONS

THALES Inside GNSS

- **≻**Agriculture
- ► High speed train/Rail maintenance
- >UAVs/UGVs
- >Structural health monitoring
- **≻Vibration monitoring**
- **▶Precision robotics**
- **▶** Vehicle dynamic testing
- >Seismic surveillance
- **≻Pipeline monitoring**
- **➢Directional borehole drilling**

High end markets

Commercial Naval Commercial Aerospace

Defense

- ➤ Defense transport aircraft
- **▶Defense UAVs/UGVs**
- **▶** Dynamic platform stabilization
- >Satcom antenna orientation
- > Soldier navigation (Military fighters)
- **≻LAV/Artillery Guns**
- >MAV/Assault Tanks
- > Missile guidance (short, medium and long range

- ➤ Platform stabilization
- **≻**Gyrocompass
- ≻INS
- >AUVs/ROVs
- >Freight transport ship
- >Antenna stabilization
- ➤ Autonomous ships/boats
- >Oceanographic & environment monitoring

- >AHRS
- >Satcom antenna orientation
- **≻Civil aircraft/helicopters**
- **≻S**mall aviation
- **≻Micro-Nanosatellites**
- ► Reusable rockets

ACCELEROMETER DETECTION CLASSIFICATION

THALES Inside GNSS inside unmanned systems

Pendulous/Translational Mass displacement/rebalance

Resonant Element Frequency

Therma

Quantum sensing

PIGA

Force Rebalance Accelerometers Resonant Element Accelerometers

Thermal Accelerometers

Atom (gravimeter)

ACCELEROMETER PERFORMANCE

Source: Neil Barbour & Yole

FOCUS ON SI-MEMS ACCELEROMETER MARKET

**Commercial: stand-alone acceleros/gyros/magnetometers, combos (IMUs). Only Si-MEMS technology included.

THALES Inside GNSS inside unmanned systems

Ask the Experts Part I

High-Performance Accelerometer Application in Navigation, Stabilization, Control and Surveying

Co-Moderator: Lori Dearman, Executive Webinar Producer

QUICKPOLL

Which class of performance would you be interested in for your applications?

Poll Results (single answer required):

Bias composite less than 70µg	41%
Bias composite between 70μg and 200μg	31%
Bias composite between 200µg and 1000µg	17%
Bias composite greater than 1000µg	11%

Usage of High Performance MEMS Accelerometers in Navigation, Stabilization, Surveying and Control

Edgar v. Hinüber
CEO and Managing Director
iMAR Navigation GmbH

Serving our customers for more than 25 years – worldwide

- → Systems for inertial navigation, guidance, surveying and control
- Gyro stabilized platforms target observation & tracking
- → Manufacturing and Development R&D of ALG, SW/FW, HW, ME
- → 75 employees, including 38 engineers 18.3 m. € turnover (2019)
- Markets: Surveying, naval / marine, airborne, automotive testing, mining, industrial, defense – manned & unmanned

Systems using high performance accelerometers

iIPSC Stabilized Gimbals for customized Payloads

iCORUS

High accurate

Airborne & Shipborne

Gravimeters

iGST / iPST
Pipeline Surveying
and Drillhead Control

iNAT, iTraceRT, iPRENA...

INS/GNSS Solutions for

Stabilization, Surveying & Con

Navigation, Stabilization, Surveying & Control

High Performance Accelerometer Requirements

Precise Navigation and Precise Tilt Sensing

- Very low accelerometer bias and also good long time stability of absolute bias
 (to achieve best system performance and to avoid an unacceptable short recalibration period)
- Very low scale factor error and non-linearity as well as good long time stability
- Very low noise resp. velocity random walk (VRW) to support fast converging of data fusion
- High shock and vibration resistance and immunity (e.g. operation together with RLGs)
- High bandwidth; low and well determined data latency and jitter regarding data sampling
- High stability of mechanical sensor axes (long time misalignment stability)
- Extensive self testing capability / BITE, high MTBF / FIT (reliability)
- **Synchronization** capability between several sensors, easy **interface** (SPI) with multiplex capability

Data Fusion ("Kalman Filter"): Fusion of Complementary Data to improve the overall accuracy

Accelerometers: Why low bias is important?

lower bias

- → better performance even in **free-inertial** mode
- lower bias instability → gives the INS/GNSS data fusion more time / reliability for parameter estimation
- Flat earth: Position error increases quadratically over time with accelerometer bias $\Rightarrow \Delta s = \frac{1}{2} \Delta a = 1 \text{ mg} \Rightarrow \Delta s$ (10 s) = 0.5 m Δs (1'000 s) = 5 km
- Schuler Oscillation: The free inertial navigation error is damped by the geometry (sphere) of the earth.
 - → The gravity is the reason, that the position error does not increase quadratically but only **linear over time**!
- The Schuler amplitude is proportional to the accelerometer offset.
- The Schuler position error amplitude is about 13 m per 1 μg accelerometer offset.
- The Schuler period is about 84.4 minutes on the Earth.

$$S_{Schuler} = 2 \Delta a \frac{r_E}{a}$$
 Position amplitude of Schuler oscillation

 Furthermore a gyro bias leads to a Schuler position drift of about 60 nm/hr per 1 °/hr gyro bias. (simplified explanation)

24 hrs Oscillation here: 0.8 nm/day

Accelerometers: Why low noise is important?

lower noise (VRW)

→ allows **faster parameter estimation** within the data fusion

Allan Standard Deviation

SN8 SiA Sensor Time in secondes Standard deviation in "g'

New Thales SiA MEMS accelerometer (lab samples):

- VRW: 2 $\mu g/\sqrt{Hz}$ (< 8 $\mu g/\sqrt{Hz}$) - bias instability: 1.1 μg @ > 10'000 sec

- bias (day-to-day): < 70 μg

QA2000-030 accelerometer:

- VRW: $7 \mu g/\sqrt{Hz}$

- bias instability: $\,$ 0.3 μg

- bias (day-to-day): < 70 μg

State-of-the-Art standard nav./AHRS grade **MEMS** accel.:

- VRW: 20 μ g/ \sqrt{Hz} (< 50 μ g/ \sqrt{Hz})

- bias instability: 2 μg

- bias (day-to-day): < 300 μg

Accelerometer: Why low latency and jitter required?

THALES Inside GNSS

- All implemented accelerometers within the INS shall acquire its acceleration at the same time
- Justification: accurate gravity compensation required during vehicle rotation

ω [angular rate of INS during time τ]

- At time t_0 the gravity **g** has to be compensated on the accelerometer with $g \bullet \sin \alpha(t_0)$
- If accelerometer data acquisition delay is τ , the resulting gravity compensation error is $\Delta a = g \bullet \sin \alpha(t_0) - g \bullet \sin [\alpha(t_0) + \omega \bullet \tau)]$
 - Example: $\Delta a (\tau = 1 \text{ ms}) = 3 \text{ mg} (e.g. 50 \text{ x larger than desired sensor bias!})$
- **Delay \tau**: (deterministic) latency can be corrected if known, but stochastical jitter not! → jitter has critical impact on navigation performance – same as fast changing bias!
 - → to achieve < 60 μg accel. accuracy, jitter shall be < 20 μs (Thales SiA:

Silicon Accelerometer MEMS

Pierre-Olivier Lefort
MEMS Expert and Product
Design Authority
Thales

Sensor characteristics

KEY PERFORMANCES (MEDIAN VALUES)

- Acceleration range
- Bias temperature sensitivity
- Bias (temperature compensated)
- Scale factor (before/after compensation)
- Vibration rectification
- Noise

Up to 100g 12 µg/°C 0.1 mg 2 ppm/°C - 5ppm 6 µg/g² [0.01 – 10 Hz] 8 µg/√Hz

ELECTRICAL INTERFACE

• Power 5 Vdc / < 150 mW

Communication
 3.3 V SPI Full Duplex / Up to 6400Hz sample rate(configurable)

Environmental

- Operating temperature
- Vibration
- Shocks

[-46; +90] °C / [-50; +195] °F

15 grms [20 – 2000 Hz]

< 250 g without recalibation

MEMS vibrating beam implementation > navigation grade performances with high input range and robustness

Thermal behavior : better than 50 μg / 10 ppm accuracy

Repeatability

- Sensors stored on shelf at 20°C, powered on or off.
- Measurements performed on a regular basis to follow bias and scale factor variations over time.

Bias stability fully compatible with high grade inertial system requirements

Allan Standard Deviation for SiA Sensor SN318

- from 4 days recording,
 20 Hz sample rate
- lab conditions 1g static acceleration
- after temperature compensation

Shock and vibration behavior

Our silicon technology

Mechanical interface and integration example

SiA sensor can be mounted with connector up or down relative to the mounting plane chosen using 2 M2 screws.

28,6 x 19,4 x 8,8 mm

(mm)

Electronic integration – Analog sensor vs. SiA

Synchronisation

THALES Inside GNSS unmanned systems

RTC (Real Time Clock) configurable by the user

Speed increment delivered at RTC rising edge frequency

1 master, 2 slaves

3 slaves

RTC sampling frequency can be defined by the user or generated inside the SiA sensor

Latency 400 µs +/- 30 µs (for 6400 Hz RTC including 50µs SPI transmission duration)

Reliability assessment

THALES Inside GNSS

Functional & design analysis: from device functions, failure modes identification & classification through criticality analysis.

- Reliability assessment plan for each sub-assembly and SiA product
- Reliability quantitative evaluation for different mission profiles

Packaging

- 2 years 85°C storage (x4)
- 500 thermal cycles -40/95°C (x3)

MEMS Cell

- 1 year 85°C storage (x24)
- 1 year 150°C storage (x8)
- 1000 thermal cycles -40/95°C (x8)

Electronics

Failure rate estimated to 30 10-9/h using FIDES approach (*)

(*) for long range aircraft mission profile

IBIT: Initial Built-In Test

Available upon user's request (checking of the sensors functionality: seismic mass check and MEMS resonators behavior check).

CBIT: Continuous Built-In Test

Covering out of range acceleration input, out of range resonators frequencies, CRC errors, Internal bias voltages control, oscillator loop parameter check.

QUICKPOLL

Except for performance, what is the other key requirement your accelerometer should have?

Poll Results (single answer required):

Small size	39%
Easy to communicate (SPI)	23%
Without exportation constraint	24%
Civil Certification data package (DO254)	7%
Large portfolio for a same size of sensor	6%

Ask the Experts Part II

High-Performance Accelerometer Application in Navigation, Stabilization, Control and Surveying

Co-Moderator: Lori Dearman, Executive Webinar Producer